Abstract Submitted for the Mar98 Meeting of The American Physical Society

Sorting Category: 9d.21e

High Resolution Heat Capacity Measurement near the Liquid-Gas Critical Point of ³He * INSEOBHAHN, FANG ZIIONG, MARTIN BARMATZ, Jet Propulsion Lab., Caltech - The divergence of the compressibility near the liquid-gas critical point of a fluid induces significant density gradients that limit the accuracy of critical exponents measured in earth-bound laboratories. A flight experinnent to perform thermodynamic measurements of ³He mar the critical point is in preparat ion. In a microgravity environment heat capacity data can be attained within an additional two decades in reduced temperature $(\epsilon = T/T_c - 1)$ closer to the phase transition than on earth [hi. R. MoMover et al., Rev. Mod. Phys. Vol. 51, 79 (1979)]. We are currently developing an experimental cell to accurately measure the heat capacity and isothermal compressibility of ³He near its critical point $(T_c = 3.31 \text{ K})$. our sample cell is 0.5 mm high to minimize gravity effects. High resolution sensors were developed for measuring temperat ure, density and pressure at low temperature. A new nano-Kelvin high resolution thermometer (HRT) based on the paramagnet ic GdCl₃ salt was developed for measurements near the ³He critical point. A description of the low temperature calorimeter and recent specific heat measurements near the critical point will be presented. *Supported by NASA.

	Inscob Hahn
l'refer Oral Session	hahn@squid.jpl.nasa.gov
Prefer Poster Session	Jet I'repulsion Lab., Caltech
Date submitted: December 1, 1997	Electronic form version 1.1